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Abstract-This paper shows that it is possible to distribute a finite amount of insulation in an optimal way 
that minimizes the overall heat transfer rate from a nonisothermal wall to the ambient. The optimal 
insulation thickness for a plane wall varies as the square root of the local wall-ambient temperature 
difference. Corresponding variational-calculus results are developed for cylindrical walls covered with 
insulation. The heat loss reduction associated with using the optimal thickness is greater when the wall is 
plane. as opposed to cylindrical. and when the wall temperature variation in the x direction has a greater 
second derivative, d’T/dx’. It is shown finally that the best insulation for a single-phase stream suspended 

in an environment of different temperature is the insulation with uniform thickness. 

1. INTRODUCTION 

IN THIS paper I consider the fundamental question of 
how a finite amount of insulation material can best 
be distributed over a wall with nonuniform tempera- 
ture. in order to minimize the total heat loss from the 
wall to the ambient. This question is important and 
interesting. It is important because many industrial 
applications in which energy conservation is a major 
concern require insulation for walls that are not iso- 
thermal. For example, this is true of the outer wall of 
a long reheating oven, in which the material that is 
being heated (e.g. steel laminates) rides slowly on a 
conveyor belt through the oven, the outer walls of 
virtually all heat exchangers, storage tanks with 
thermally stratified liquids (e.g. solar thermal appli- 
cations), and the lateral surfaces of mechanical sup- 
ports connecting regions with different temperatures. 

Next to the task of conserving energy, the idea that 
the supply of insulation material is finite is always on 
the mind of the designer. The purchase, installation 
and maintenance of an insulation can be expensive. 
In some cases even the size (weight, volume) of the 
used insulation material cannot exceed a certain limit. 
Examples of this kind are airborne applications, and 
installations where the integrity of the mechanical sup- 
ports is threatened by the weight of the insulated 
system (e.g. the suspended insulated duct of Fig. 4). 

The idea examined in this paper is interesting as 
well. I found this only after I started to work on 
it, because original!y I felt that the process of one- 
dimensional heat transfer through an insulation is too 
simple to hide any more subtleties in the last decade of 
the twentieth century. Indeed, insulations are always 
treated as layers and shells with uniform thickness [I, 
21. Yet my first try at solving the problem (Section 2) 

led to a paradoxical conclusion that served as the 
driving force for the more rigorous study that 
followed. These developments are reported in the 
chronological sequence in which they occurred, so 
that the reader may see how the solution to one prob- 
lem evolved into the statement for the next problem. 

2. PLANE WALL WITH LINEAR 

TEMPERATURE DISTRIBUTION 

In order to see the basic challenge of optimizing the 
distribution of insulation subject to insulation 
material constraint, consider the simplest geometry in 
which this idea can be tried out. Figure 1 (a) shows a 
plane wall of length L and width W (perpendicular 
to Fig. I (a)). The wall temperature varies in the longi- 
tudinal direction, T(x). We assume for the time being 
that the wall temperature increases linearly with x, 
Fig. l(b) 

T(x) = To + ; (TL - ToI (1) 

and that this temperature variation is independent of 
the amount and distribution of thermal insulation 
over the length L. This is a good model for the tem- 
perature distribution along the outer enclosure of a 
long counterflow heat exchanger, a stratified water 
storage tank, or a reheating oven in the steel industry. 
Linear distribution is used now only for illustration, 
because it is simple. The general (unspecified) wall 
temperature distribution will be considered in the next 
section. 

The wall outer surface is separated from the 
environment of temperature T,, by a layer of insu- 
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NOMENCLATURE 

b taper parameter, equation (32) r outer radius of pipe wall 
C coefficient, equation (20) r. outer radius of insulation 
CP specific heat at constant pressure I insulation thickness 
f relative insulation volume, equation (23) I, pipe wall thickness 
F integrand of @ T wall temperature, Fig. 1 
h heat transfer coefficient between stream T, stream temperature, Fig. 4 

and pipe wall, Fig. 4 Tll inlet stream temperature 
ho heat transfer coefficient between TL wall temperature at x = L 

insulation and ambient T out outlet stream temperature 
k thermal conductivity of insulation TO wall temperature at x = 0 

material u overall heat transfer coefficient based on 
kv thermal conductivity of pipe wall 2nr 

material V insulation volume 
K constant W width of plane wall 
L wall length .Y longitudinal coordinate 
n? mass flow rate Y dimensionless parameter, equation (22). 
n wall temperature curvature parameter, 

equation (15) Greek symbols 
N number of heat transfer units, equation 1 Lagrange multiplier 

(34) @ aggregate integral. 
4 total heat transfer rate 
qc total heat transfer rate through Subscripts 

insulation with uniform thickness avg average over L 

4lin total heat transfer rate through min minimum 
insulation with linear t(x) opt optimal. 

lation of thermal conductivity k, and unspecified The question next is whether this heat transfer rate 
thickness t(x). The outer surface of the insulation is (heat ‘loss’, or heat ‘leak’ in cryogenics) can be 
practically equal to T,,, in other words, the local ther- decreased by redistributing the limited amount of 
mal resistance from the wall surface to the ambient is insulation more wisely. While looking at the linear 
due entirely to the insulation layer. The wall and its T(x) distribution shown in Fig. l(b), it makes sense 
insulation are sufficiently slender in the x direction, to argue that an insulation that is thicker near the 
so that the heat transfer is oriented in the transversal x = Lend of the wall will be better. Indeed, absolutely 
direction, from T(x) to To. The constraint that the no insulation is needed at the other extremity of the 
amount of insulation material is fixed means that the wall, because at x = 0 the wall-ambient temperature 
volume integral difference is zero. 

s 

L 
v= t(x) W dx (2) a 

has a constant value. An equivalent constraint is that 
the L-averaged insulation thickness is fixed 

The simplest way of trying this idea is by having an 
insulation design in which the thickness t(x) increases 
linearly from zero at x = 0 to a large enough value so 
that the volume constraint (3) is satisfied, Fig. 1 (d) 

t(x) = 2&E. (6) 
1 L 

t nvg = - 
s LCI 

r(x)dx=& (3) 
In this case the total heat transfer rate 

The simplest design, of course, is the one in which 
the insulation is spread evenly over the wall surface q= kW 
L x W, Fig. 1 (c) I 

L 
TM - To dx 

(7) 0 N-4 

t(x) = fnVg, constant. (4) is calculated by using the temperature and thickness 

In this case, it is easy to show that the total heat 
distributions (1) and (6), and the result is 

transfer rate from the wall (with linear T(x), equation 
(1)) to the ambient is 

TL-To q,in = :k WL- 
t aw 

(8) 

qc = :kWLF. 
nw 

(5) 
In this way we reach the paradoxical conclusion 

that equation (8) is identical to equation (5), i.e. that 
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ambient r insulation, k 

a) 

t-T(x), wall surface 

b) 

T(x) 
A 

TL - 

Tt-t 

c) 

d) 

rTO 

FIG. I. Plane wall with linear temperature distribution (b) and insulation with various thickness functions 
(a, c, d). 

the tapered insulation layer (6) is as effective as the 
insulation with uniform thickness (4). It is a con- 
clusion that casts doubt on the method of varying the 
insulation thickness to minimize heat loss. As we will 
see in the next section, the variable thickness approach 
is more challenging (and more subtle) than thought 
when the linear distribution was chosen (6). 

3. OPTIMAL DISTRIBUTION OF INSULATION 
ON A PLANE WALL 

The general problem in which the wall temperature 
T(x) and the insulation thickness t(x) are not specified 
consists of minimizing the heat loss integral (7) subject 
to the volume integral constraint (3). The objective is 
to find the optimal distribution of insulation, top,(x), 
that minimizes the q integral (7). 

The variational-calculus solution is found by noting 
that the minimization of the integral (7) subject to the 
integral constraint (3) is analogous to minimizing the 
aggregate integral [3,4] 

T(x) - To 

64 
+A? dx 1 (9) 

in which L is a Lagrange multiplier. Let F be the 
integrand of Q, and note that Fis a linear combination 
of the integrands of integrals (7) and (3). The optimal 
t(x) function that minimizes Q, is the solution to the 
Euler equation, which in this case is aF/at = 0. The 
solution has the form 

fop,(x) = K[T(x) - T,] ‘:* (10) 

in which K is shorthand for the constant (k WL/I) ‘12. 
This constant is determined by substituting equation 
(10) in the volume constraint (3), so that in the end 
the optimal thickness function is 

L,LW = 
LA”& 

s 

L [T(x)-T,,]“2. (11) 

[T(x) - To] “2 dx 
0 

The corresponding minimum heat transfer rate 
through the insulated area L x W is 
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Worth noting is that the same t,,,(x) result is 

A. BUAN 

[T(s)-TO]“’ dx (‘2) 
of Fig. 2. The curvature of the wall temperature func- 
tion has the same sign as the dimensionless parameter 

obtained when the amount of insulation material is 
minimized subject to a fixed rate of heat loss to the 
ambient. In other words, variational-calculus leads 
again to equation (1 I) when the integral (3) is mini- 
mized while holding the integral (7) fixed. 

In conclusion, for maximum insulation effect the 
insulation thickness must be proportional to the 
square root of the local temperature difference across 
the insulation. In the preceding section, for example, 
the temperature difference increased linearly in the x 
direction, and this means that top, must increase as 
x’j2. Indeed, by substituting equation (1) in the gen- 
eral r,,,(s) formula (I I) we find 

which satisfies also the constraint (3). The minimum 
heat transfer rate that corresponds to equation (I 3) is 

n. This also means-that the linear T(x) example of 
equation (1) represents the n = 0 curve of the family 
represented by equation (I 5). 

The main purpose of Fig. 2 is to show the effect of 
the wall temperature curvature parameter n on the 
total rate of heat transfer through the wall surface. 
The analysis that stands behind the construction of 
Fig. 2 is left out for the sake of brevity. Plotted on the 
ordinate is the group (qc/qmin) - 1, where qc is the total 
heat transfer rate when the insulation has uniform 
thickness (, = tavp) 

qc =kWLTL-To.e”-‘-n 

Lvg n(e”- I) 
(16) 

The minimum heat transfer rate qmin that corresponds 
to the optimally distributed insulation material (I I) 
is obtained by substituting equation (15) in equation 
(12). The result becomes more compact if we present 
it as the ratio 

n(e” - I -II) _- 
qz. -4{(e”-1)“2 -tan-l[(e”-])l/2]}2 @‘O) 

If the earlier designs (4) and (6) are compared with 
the optimal design (I 3) for the wall with linearly vary- 
ing temperature distribution, it is found that the heat 
loss in the earlier designs (5) and (8) is 12.5% larger 
than the true minimum estimated in equation (14). In 
the next two sections we will see that the difference 
between the constant-r and optimal-r designs can be 
smaller or larger than this 12.5% difference, depend- 
ing on the wall shape (plane vs cylindrical) and the 
wall temperature distribution (linear vs nonlinear). 
The most important conclusion reached until now is 
that a finite amount of insulation can be distributed 
optimally (unevenly, in this case) so that the overall 
insulation effect is maximized. 

4. PLANE WALL WITH NONLINEAR 

TEMPERATURE DISTRIBUTION 

In general, the wall that must be insulated can have 
a temperature that does not vary linearly with spatial 
position. For example, in a long reheating oven for 
the production of laminated steel products, the wall 
has distinct hot zones according to the positions occu- 
pied by the few gas burners. A nonlinear wall tem- 
perature T(x) that allows us to investigate the effect 
of the finite curvature d’T/dx2 on the conclusions 
drawn in the preceding section is the exponential 

Yc 

4mm 

n(n+ I -e’) 

(n < 0). (l7b) 

Figure 2 shows that the reduction in the heat loss 
through the insulation [(qc/qmin)- I] is greater when 
the insulation thickness varies optimally and the wall 
temperature function has positive curvature. When 
the curvature is negative, the energy savings associ- 
ated with the optimal distribution of insulation 
material are of the order of lo%, i.e. of the same order 
as when the wall temperature varies linearly. 

5. CYLINDRICAL WALL WITH LINEAR 

TEMPERATURE DISTRIBUTION 

Consider now the problem of distributing a finite 
amount of insulation optimally over a cylindrical wall 
of radius r and length L, Fig. 3. The known tem- 
perature distribution of the wall, T(x), is again inde- 
pendent on how the insulation material is distributed. 
The outer radius of the insulation layer of thickness 
t(x) is r+t(.r), and the insulation temperature at the 
outer radius is To. The insulation volume is fixed 

exp n” -1 
( > L 

V=~~r2{[l+rl’-l}dx (18) 

T(x) = T,+(T,--T,) 
exp (n) - 1 (15) The optimal insulation thickness I(X) can be deter- 

mined by applying once more the Lagrange multiplier 
This temperature distribution is illustrated in the inset method of Section 3. The total heat transfer rate 
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T(x)- To 
TL-To 

0 
-1 0 1 2 

n 

FIG. 2. The effect of a nonlinear wall temperature distribution on the heat loss reduction due to using an 
insulation with optimal thickness variation. 

4= I 
L 27MW) - TOI dx 
o In U + W/4 

(19) 

is minimized subject to the integral constraint (18), 
and the Lagrange multiplier 1 is evaluated in the end 
by invoking the constraint. 

In this section we are most interested in how the 
wall shape affects the plane-wall conclusions reached 
until now, therefore we omit the analysis and report 
only on the f,,,(x) solution for the particular case 
when T(x) varies linearly as in equation (I). This 
t,,,(x) solution is given implicitly by 

[, I ~op;(xqln[l+!!3$q= c(;T2 (20) 

where C is shorthand for the group [~lk( TL - 7’,)/1] ‘12. 
The constant C is evaluated by substituting equation 
(20) in the integral constraint (18) 

(Y’-lI)y*ny(lny+*)dy=f (21) 

where 

fop, CL) 
Y=l+p 

r 

and 

f2- 
m2L 

(22) 

(23) 

Now, if we set x = L in equation (20) we obtain 
C = Y In Y, which means that Y is a unique function 
of C. In conclusion, equation (21) delivers C as a 
function of the dimensionless parameter A which is 
defined as the ratio between the insulation volume 
and the volume of the cylinder of radius r and length 
L, equation (23). 

The minimum heat transfer rate that corresponds 
to the insulation with optimal thickness, equation 
(20), is 

qmin = $kL(TLBTOl 
I 

Y 
y3(lny)2(lny+ 1) dy. 

0 

(24) 

This is compared in Fig. 3 with the heat transfer 
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FIG. 3. Cylindrical wall with linear temperature distribution: the heat loss reduction due to using an 
insulation with optimal thickness variation. 

rate that passes through the corresponding constant- like a thick shell around the cylinder, and the ratio 
thickness insulation (t = favg) qc/qmin decreases. In conclusion, the heat loss 

2nkL( 7-L - To) 
reduction due to using an optimal distribution of insu- 

6% = 
In(l+f) 

(25) lation on a cylinder is smaller than the reduction regis- 
tered if the wall is plane. 

The volume constraint (18) can be combined with 
equation (23) to show that tavg/r = (1 +f) “I - 1. 

6. STREAM SUSPENDED IN AN 

ENVIRONMENT OF DIFFERENT 

TEMPERATURE 

Figure 3 shows the relative reduction in heat loss 
to the ambient, when the design switches from the 
constant-l configuration to the lop,(x) distribution rec- 
ommended by equation (20). The parameter that 
varies freely in the case of the cylindrical geometry is 
the relative insulation volume .f or, on the abscissa, 
the optimal insulation thickness at the x = .L end, 

fo,,Wlr. 
The limit f-+ 0 represents an insulation that is so 

thin (relative to r) that it can be treated as an insu- 
lation mounted on a plane wall. This means that the 
solution developed in Section 3 for the plane wall with 
linear T(x) is equivalent to setting ,f= 0 in Fig. 3. As 
,f (or t,,,(L)/r) increases, the insulation looks more 

In all the variants of the optimization problem dis- 
cussed until now it was assumed that the wall tem- 
perature distribution T(x) is not affected by the 
amount of insulation and the manner in which this 
amount is distributed over the wall length. In this 
section, this modelling feature is discarded and atten- 
tion is turned to Fig. 4. 

One of the simplest and most basic configurations in 
which the wall temperature distribution is intimately 
coupled to the insulation performance is the stream 
suspended in an environment of different temperature. 
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TO ambient 

1 
insulation, k 

w ’ 

hot stream T ~.--------.------------------------------.-~- + 
h, Th r pipe wall T Out 

r 
0 X L 

-2 -1 0 1 2 

b 
FIG. 4. Insulated stream suspended in an environment of different temperature : the effect of tapering the 

layer of insulation. 

This is one of the most common features of thermal 
design, from power plants and chemical process 
plants, to piping in large buildings. The bulk tem- 
perature of the ducted (single-phase) stream Tr 
decreases longitudinally only because of the loss of 
heat through the insulation. The function of the insu- 
lated duct is to deliver the stream with an outlet tem- 
perature (T,,,,) that resembles as closely as possible 
the high inlet temperature (r,). 

The duct can have any cross-sectional shape, how- 
ever, for better illustration a pipe with the outer radius 
r is assumed. The outer radius of the insulation layer 
is r,(x) = r+ I(X), and the thickness t(x) is not necess- 
arily small relative to r. The assumptions that the 
insulation accounts for the entire thermal resistance 
between wall and ambient are also dropped. In Fig. 
4, the overall heat transfer coefficient U between the 
local bulk temperature of the stream T,(x) and the 
environment T,, is given by (e.g. see p. 85 of Incropera 
and Dewitt [l]) 

I 1 
--+ 

U2nr h,2nr, 

(26) 
The four resistances on the right-hand side represent, 
in order, convection outside the insulation (constant 
h,), conduction through the insulation, conduction 
through the pipe wall (thickness t, CC r, thermal con- 
ductivity k,), and fully developed convection inside 
the pipe (constant 11). Note that U is a function of x, 
because of t(x). 

The first-law statement for a control volume of , 
length dx and radius r is 

-tic, dT, = U2m(T,- To) dx (27) 

in which tic, is the capacity rate of the stream. Next, 
we integrate equation (27) from x = 0 (where T, = 

T,,) to L (where T, = To,,), and obtain the integral 

TI, - To 
In- = 

Tout - To 
(28) 
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This integral must be minimized, because the pur- if it is assumed for simplicity that tavg << r. The dimen- 
pose of the insulation is to maintain the highest pos- sionless parameter b accounts for the taper, and has 
sible T,,,. The maximization of the integral (28) is the range -2 < b < 2. If we further assume (as in 
subject to the volume constraint (18). The variational- Sections 2-5) that the stream-ambient thermal resist- 
calculus problem boils down to minimizing the aggre- ance is due entirely to the layer of insulation, in place 
gate integral of equation (28) we obtain 

whose integrand is labelled F, in other words, { } = F. 
The optimal function t(x) is the solution to the Euler 
equation 

aF 
z= 

0. (30) 

This equation can be written down by using equation 
(26) for U[r(x)]. This last analytical step is not necess- 
ary if we notice that U decreases when t increases 
(assuming that r is greater than the critical radius 
of insulation), while the second term in F (the one 
multiplied by A) increases when t increases. This 
means, first, that F has a minimum with respect to I. 
That minimum can be pinpointed by solving equation 
(30), but since all the other quantities that will be 
present in that equation are x independent, the t(x) 
solution of equation (30) is simply 

t OPf = constant. (314 

The actual constant is evaluated by forcing fop, to obey 
the volume constraint (18) 

The same conclusion is reached if the roles of the 
two integrals in @ are reversed, i.e. if the amount of 
insulation is minimized subject to a fixed rate of heat 
transfer to the ambient. It is a general conclusion, in 
view of the many features included in the heat transfer 
model (26). This conclusion differs from what we 
found in Sections 2-5, because in those earlier 
examples we considered wall temperature distri- 
butions that do not depend on the insulation that is 
applied on them. 

We learned in this section that the best insulation 
is also the simplest, i.e. the one with uniform thickness. 
It is fascinating that what engineers have been doing 
all along (no doubt, for ease of installation and 
expediency) is actually the optima1 way of using a 
limited amount of insulation material. 

Without knowing this general conclusion, it would 
have been reasonable to argue that the better insu- 
lation must be thicker near the inlet (hot end), because 
in that region the stream-ambient temperature differ- 
ence is larger than downstream. One option is to use 
the tapered insulation shown in the upper part of Fig. 
4, which is represented by 

w = favg [I-b&;)] (32) 

Tout - To ~ = exp 
TI, - To 

Parameter N is the ‘number of heat transfer units’ 

In the special case when the insulation thickness is 
uniform (b = 0), equation (33) reduces to 

U-out-T&o = exp (-N) 

T,-To 
(35) 

The tapered and constant-thickness designs can be 
compared by examining the ratio (To,,- T,,)/ 

(To,,- T,,),=,. This ratio is plotted vs b and N in the 
lower part of Fig. 4. It reconfirms the conclusion (3 1) 
that the best design (highest T,,,) is the one with 
uniform distribution of insulation (b = 0). The 
uniform-t design is superior especially when the insu- 
lation supply (t,,.& is so small that the order of N 
exceeds 0.1. 

7. CONCLUSIONS 

The main conclusions of this study are that : 

(I) it is possible to distribute a finite amount of 
insulation in a certain, nontrivial way that minimizes 
the total heat transfer rate from a nonisothermal wall 
to the ambient ; 

(2) when the wall is plane, the optima1 thickness of 
the insulation varies as the square root of the local 
wall-ambient temperature difference ; 

(3) the heat loss reduction due to using an insulation 
with optimal thickness becomes greater as the cur- 
vature of the wall temperature distribution (d*T/dx*) 
increases ; 

(4) the heat loss reduction due to using an insulation 
with optima1 thickness on a cylindrical wall is smaller 
than on the corresponding plane wall ; and 

(5) the best insulation for a single-phase stream 
suspended in an environment of different temperature 
is the insulation with uniform thickness. 
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